Crowd Density and Counting Estimation Based on Image Textural Feature

نویسندگان

  • Jianjie Yang
  • Jin Li
  • Ye He
چکیده

This paper proposes an image textural analytical method for estimating the crowd density and counting. At first, the target detection is conducted to obtain the foreground image. This crowd image is used to calculate the gray level co-occurrence matrix (GLCM). Then, according to the characteristic values of the gray level co-occurrence matrix, i.e., energy, entropy, contrast, homogeneity, we use support vector machine (SVM) to estimate crowd density. Simultaneously, the method of linear regression is used to estimate the crowd counting. The accuracy of evaluation is improved since we extract the target image textural traits to overcome the influence of background for estimation results. Finally, the experimental results show that the proposed approaches of crowd density and counting are feasible and effective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation

In real-world crowd counting applications, the crowd densities vary greatly in spatial and temporal domains. A detection based counting method will estimate crowds accurately in low density scenes, while its reliability in congested areas is downgraded. A regression based approach, on the other hand, captures the general density information in crowded regions. Without knowing the location of ea...

متن کامل

SPOT-5 Spectral and Textural Data Fusion for Forest Mean Age and Height Estimation

Precise estimation of the forest structural parameters supports decision makers for sustainable management of the forests. Moreover, timber volume estimation and consequently the economic value of a forest can be derived based on the structural parameter quantization. Mean age and height of the trees are two important parameters for estimating the productivity of the plantations. This research ...

متن کامل

A Survey of Recent Advances in CNN-based Single Image Crowd Counting and Density Estimation

Estimating count and density maps from crowd images has a wide range of applications such as video surveillance, traffic monitoring, public safety and urban planning. In addition, techniques developed for crowd counting can be applied to related tasks in other fields of study such as cell microscopy, vehicle counting and environmental survey. The task of crowd counting and density map estimatio...

متن کامل

Deep Spatial Regression Model for Image Crowd Counting

Computer vision techniques have been used to produce accurate and generic crowd count estimators in recent years. Due to severe occlusions, appearance variations, perspective distortions and illumination conditions, crowd counting is a very challenging task. To this end, we propose a deep spatial regression model(DSRM) for counting the number of individuals present in a still image with arbitra...

متن کامل

Detection of High-Density Crowds in Aerial Images Using Texture Classification

Automatic crowd detection in aerial images is certainly a useful source of information to prevent crowd disasters in large complex scenarios of mass events. A number of publications employ regression-based methods for crowd counting and crowd density estimation. However, these methods work only when a correct manual count is available to serve as a reference. Therefore, it is the objective of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Multimedia

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014