Crowd Density and Counting Estimation Based on Image Textural Feature
نویسندگان
چکیده
This paper proposes an image textural analytical method for estimating the crowd density and counting. At first, the target detection is conducted to obtain the foreground image. This crowd image is used to calculate the gray level co-occurrence matrix (GLCM). Then, according to the characteristic values of the gray level co-occurrence matrix, i.e., energy, entropy, contrast, homogeneity, we use support vector machine (SVM) to estimate crowd density. Simultaneously, the method of linear regression is used to estimate the crowd counting. The accuracy of evaluation is improved since we extract the target image textural traits to overcome the influence of background for estimation results. Finally, the experimental results show that the proposed approaches of crowd density and counting are feasible and effective.
منابع مشابه
DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation
In real-world crowd counting applications, the crowd densities vary greatly in spatial and temporal domains. A detection based counting method will estimate crowds accurately in low density scenes, while its reliability in congested areas is downgraded. A regression based approach, on the other hand, captures the general density information in crowded regions. Without knowing the location of ea...
متن کاملSPOT-5 Spectral and Textural Data Fusion for Forest Mean Age and Height Estimation
Precise estimation of the forest structural parameters supports decision makers for sustainable management of the forests. Moreover, timber volume estimation and consequently the economic value of a forest can be derived based on the structural parameter quantization. Mean age and height of the trees are two important parameters for estimating the productivity of the plantations. This research ...
متن کاملA Survey of Recent Advances in CNN-based Single Image Crowd Counting and Density Estimation
Estimating count and density maps from crowd images has a wide range of applications such as video surveillance, traffic monitoring, public safety and urban planning. In addition, techniques developed for crowd counting can be applied to related tasks in other fields of study such as cell microscopy, vehicle counting and environmental survey. The task of crowd counting and density map estimatio...
متن کاملDeep Spatial Regression Model for Image Crowd Counting
Computer vision techniques have been used to produce accurate and generic crowd count estimators in recent years. Due to severe occlusions, appearance variations, perspective distortions and illumination conditions, crowd counting is a very challenging task. To this end, we propose a deep spatial regression model(DSRM) for counting the number of individuals present in a still image with arbitra...
متن کاملDetection of High-Density Crowds in Aerial Images Using Texture Classification
Automatic crowd detection in aerial images is certainly a useful source of information to prevent crowd disasters in large complex scenarios of mass events. A number of publications employ regression-based methods for crowd counting and crowd density estimation. However, these methods work only when a correct manual count is available to serve as a reference. Therefore, it is the objective of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Multimedia
دوره 9 شماره
صفحات -
تاریخ انتشار 2014